
Layer API - A Simple Neural Network
Group 18: Akhilesh Devrari, Chirag Vashist, Prabhakar Prasad

March 15, 2019

1



Contents
1 Aim 3

2 Datasets 3

3 Code Specifications 3

4 Dataset-1 : 28*28 MNIST 3
4.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.2 Classifier-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2.1 Network Architecture . . . . . . . . . . . . . . . . . . . . 4
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2.3 Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.3 Classifier-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . 6
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.4 Classifier-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4.1 Network Architecture . . . . . . . . . . . . . . . . . . . . 7
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Dataset-2 : 28*28*3 Coloured Lines on Black Background Dataset 8
5.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Classifier-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2.1 Network Architecture . . . . . . . . . . . . . . . . . . . . 8
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2.3 Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2



1 Aim
Given two image data-sets, we were required to use code a Layer API to build
a fully-connected neural network, in order to classify the images.

2 Datasets
We are given the following dataset :

1. 28*28 MNIST Dataset.

2. 28*28*3 Coloured Lines on Black Background (CLBB) Dataset.

3 Code Specifications
We were successfully able to code the required API by using Python Library
Numpy. No other curated neural networks library like TensorFlow, Keras or
PyTorch were used.
We constructed two major classes :

1. Layer Class : This class is used to design individual layers of the neural
network. Using this class the user can decide the activation functions and
the dropout probability.

2. Model Class : This class is used to tune the entire network as a whole.
Using this class, the user can decide the Optimizer, the learning rate, the
number of maximum iterations.

The various specifications provided in the Layers API :
1. Activation Functions : Sigmoid, Rectified Linear Unit, tanh, Softmax.

2. Regularization : Inverted Dropout.

3. Optimizer : Gradient Descent, Gradient Descent with Momentum, RMS
Prop, Adagrad and Adam.

4. Loss Function : Cross-entropy.

4 Dataset-1 : 28*28 MNIST
4.1 Dataset Preparation
The data-set contained 70000 images of 28*28*1 Black-and-White images. In
order to prepare the data, we first flattened each data image to a single vector
with pixel values between 0 and 1. This resulted in a 784-dimensional feature
representing a single image. Next we partitioned data into training and testing
set.

1. Total Data-Samples : 70000

2. Training Samples : 60000

3. Testing Samples : 10000
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4.2 Classifier-1
4.2.1 Network Architecture

1. Layer-1 : 784 neurons. ReLU activation

2. Layer-2 : 196 neurons. ReLU activation

3. Layer-3 : 58 neurons. ReLU activation

4. Layer-3 : 10 neurons. Softmax activation

The learning rate was set to 0.001. The desired accuracy was set to 99%
and number of maximum iterations to 100.

4.2.2 Results

Confusion Matrix =



965 0 1 2 1 4 2 2 1 2
0 1127 0 1 0 1 2 2 2 0
5 4 1000 5 5 0 4 2 6 1
0 1 3 975 0 15 0 4 5 7
0 0 1 0 967 0 5 1 1 7
3 0 0 3 1 876 2 1 4 2
4 3 1 0 5 23 920 0 2 0
0 5 7 4 3 1 0 998 0 10
4 0 2 6 3 12 3 3 933 8
2 3 0 4 10 6 0 3 1 980



1. Training Accuracy : 99.05%

2. Testing Accuracy : 97.41%

4.2.3 Inferences

1. It is evident from the Confusion Matrix that a major source of inaccuracy
is images of Class-6 being classified into Class-5. This makes sense as both
the number have a very similar structure.

2. Using this model, we are able to get a good amount of training accuracy
: 99.055%, but the test accuracy is lower, around 97.41%. Thus although
this is not a significant issue, but this indicates that the model is starting
to over-fit.
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Figure 1: MNIST Data-Set : Accuracy vs Epochs

Figure 2: MNIST Data-Set : Loss vs Epochs
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4.3 Classifier-2
In order to tackle the overfitting in the previous model, we introduced drop-out
regularization in hopes of getting better performance.

4.3.1 Network Architecture

1. Layer-1 : 784 neurons. ReLU activation. Keep Probability : 0.75

2. Layer-2 : 196 neurons. ReLU activation. Keep Probability : 0.9

3. Layer-3 : 58 neurons. ReLU activation. Keep Probability : 1.0

4. Layer-3 : 10 neurons. Softmax activation

The learning rate was set to 0.001. The desired accuracy was set to 99%
and number of maximum iterations to 100.

4.3.2 Results

1. Training Accuracy : 93.18%

2. Testing Accuracy : 93.4%

As we can, by using drop-out regularization, we are able to bring down the
difference between training and testing accuracy. The model was trained for a
handful number of epochs, but I am sure that better accuracy could have been
obtained by using more number of epochs.

Figure 3: MNIST Data-Set Accuracy : Dropout vs No-dropout
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4.4 Classifier-3
In order to explore the convergence rate of various optimizer, we trained a model
on RMS Prop optimizer.

4.4.1 Network Architecture

1. Layer-1 : 784 neurons. ReLU activation.

2. Layer-2 : 196 neurons. ReLU activation.

3. Layer-3 : 58 neurons. ReLU activation.

4. Layer-3 : 10 neurons. Softmax activation

The learning rate was set to 0.001. The desired accuracy was set to 99%
and number of maximum iterations to 100. However, rather than using gradient
descent optimizer, we used a RMS Prop as an optimizer.

4.4.2 Results

1. Training Accuracy : 98.58%

2. Testing Accuracy : 97.14%

It is very obvious from the graph that using RMS Prop optimizer, we are
able to converge in lesser number of epochs compared to using Gradient Descent.
However, not all optimizers are always very good. Some optimizers like Adam
took a lot of time for one epoch. This is due to the various computations
happening during the back-propogation step.

Figure 4: MNIST Data-Set Accuracy : Gradient Descent vs RMS Prop
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5 Dataset-2 : 28*28*3 Coloured Lines on Black
Background Dataset

5.1 Dataset Preparation
The data-set contained 70000 images of 28*28*3 Black-and-White images. In
order to prepare the data, we first flattened each data image to a single vector
with pixel values between 0 and 1. This resulted in a 2352-dimensional feature
representing a single image. Next we partitioned data into training and testing
set.

1. Total Data-Samples : 96000

2. Training Samples : 72000

3. Testing Samples : 24000

5.2 Classifier-1
5.2.1 Network Architecture

1. Layer-1 : 2352 neurons. ReLU activation

2. Layer-2 : 196 neurons. ReLU activation

3. Layer-3 : 96 neurons. Softmax activation

The learning rate was set to 0.001. The desired accuracy was set to 99%
and number of maximum iterations to 100.

5.2.2 Results

Since the data-set has 96 classes, it is impossible to show the F-Measure and
the Confusion Matrix in this report. Rather, we can show other data about the
model :

1. Training Accuracy : 99.02%

2. Testing Accuracy : 98.9%
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Figure 5: CLBB Data-Set : Accuracy vs Epochs

Figure 6: CLBB Data-Set : Loss vs Epochs
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5.2.3 Inferences

Even for a very shallow neural network, we get an excellently trained model that
gives sublime training and test accuracy. Through this model, we have seen the
immense potential of Neural Networks.
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